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Abstract—This paper will discuss the implementation of Cuttlefish,
a library for building configurable, fault tolerant, elastic, distributed
neural networks. Cuttlefish is built on top of the Distributed Ten-
sorFlow library. It uses Docker containers to represent units or
neurons in the a neural network. More specifically each container
(neuron) will run as a service that can communicate with other
neurons in the network. Our neural network will be a n layered
network, implemented and configured to run on Amazon Web Ser-
vice’s Elastic Container Service (ECS).

1 INTRODUCTION

Machine learning and more specifically the use of Neural
Networks have many applications in both the research
and commercial software. Though most machine learning
techniques and algorithms employed today were developed
over 20 years ago the rise of cheap, powerful processors
(GPUs and CPUs) and higher capacity storage has allowed
these techniques and algorithms to be used at scale.

In this paper we will discuss the implementation of
Cuttlefish, a library for building configurable, fault tolerant,
elastic distributed neural networks. We will also discuss the
technologies used to implement this library which includes
the use of clustered Docker containers, where each container
represents a neuron in the network, distributed TensorFlow
and Amazon Web Service’s Elastic Container Service (ECS).

2 BACKGROUND

In this section we will briefly discuss the technologies used
to build Cuttlefish. In later sections we will discuss in more
detail how these technologies are used.

2.1 Deep Neural Networks

A neural network [1] is a set of algorithms, that is primarily
designed to perform pattern recognition. It does data inter-
pretation through a kind of machine perception or clustering
input. Neural networks help us classify as well as cluster
data. It is called neural network because it is loosely inspired
by neuroscience. The motivation for the development of
neural network technology stemmed from the desire to
develop an artificial system that could perform "intelligent”

tasks similar to those performed by the human brain. Neural
networks resemble the human brain in the following two
ways: Firstly, a neural network acquires knowledge through
learning. Secondly, a neural network’s knowledge is stored
within inter-neuron connection strengths known as synaptic
weights. The true power and advantage of neural networks
lies in their ability to represent both linear and non-linear
relationships and in their ability to learn these relationships
directly from the data being modeled.

Deep feed forward networks [16], also often called feed
forward neural networks, or multilayer perceptrons (MLPs),
are the quintessential deep learning models. A feed forward
network is said to be deep when it has more than one hidden
layer. A lot of the benefit in deep neural networks comes
from the ability of lower layers to learn representations that
the higher layers can then use to perform their classification

[2][3].
2.2 Docker

Docker is the world’s leading software containerization
platform [4]. Docker is open source, designed to make it
easier to create, deploy, and run distributed applications
inside lightweight Linux containers. It provides a way to run
applications securely isolated in a container by packaging it
and all its dependencies as well as libraries. Docker contain-
ers can wrap the software into a self-contained unit with
a complete file-system that contains everything needed to
run: operating system, code, runtime, system tools, system
libraries, and configured system resources, etc. By using
Docker containers, we can deploy, and back up a workload
regardless of environment quickly and easily more than
using virtual machines.

Docker allows to change any application dynamically by
adding new capabilities and scaling services which makes
containers more portable and flexible to use. Docker also has
a mechanism for configuring and spinning up containers
that should be clustered together or that are dependencies
of one another.

One of Docker’s advantages is simplified maintenance
which means Docker minimizes the efforts and risks associ-
ated with application dependencies. The other advantage is
increasing developer productivity because it decreases the
time that is spent setting up new environments.



2.3 TensorFlow

TensorFlow is a framework for building Deep Learning
Neural Networks [5]. It was developed by engineers and
researchers working on the Google Brain Team within
Google’s Machine Intelligence research organization. It is
an open source software library for machine learning com-
putation using data flow graphs. Data flow graphs de-
scribe mathematical computation with nodes and edges.
Each node in the graph represents mathematical operations,
while edges represent the relationships between nodes. A
computation expressed using TensorFlow can be executed
in one or more GPUs or CPUs in a desktop, mobile device,
or server with a single APL

The initial open-source release of TensorFlow supports
multiple devices (CPUs and GPUs) in a single computer
which is called the single-machine or single node imple-
mentation, while the distributed version supports multiple
devices (CPUs and GPUs) across a cluster of machines [6].

2.4 Amazon EC2 Container Service (ECS)

Amazon EC2 Container Service (ECS) is high performance
container management service which supports Docker con-
tainers through Management Console or Command Line
Interface. It is highly scalable and allows applications to
run easily on a managed cluster of Amazon Elastic Com-
pute Cloud (Amazon EC2) instances. Amazon ECS enables
applications to be scaled without any additional complexity
from a single container to thousands of containers across
hundreds of instances [3]. Amazon ECS allows launch and
stop container-based applications with simple API calls.

3 MOTIVATION

The motivation for Cuttlefish was born from the observation
that neural networks at their core are computational graphs
and more specifically directed computational graphs, where
each neuron in the graph is a single computation unit. This
observation coupled with the understanding that in order to
train models and perform inference on new data presented
to these models at scale, in a production environment, re-
quires implementing neural networks in a way that enables
us to infinitely scale the execution of the these computation
graphs in way that allows us to leverage all available system
resources.

Tasks for training models and performing inference in
neural networks are inherently parallelizable. Hence, it
should be possible to implement a library that allows users
to create a fault tolerant, elastic, distributed neural network,
using configurable hyperparameters to drive the dynamic
creation of a directed graph of neurons (a neural network).
To implement this library we need a way to represent each
node in the network physically; as a device or machine
where computation execution will take place. We also need
a centralized database to store intermediate values for the
weight parameters each neuron calculates during model
training. Moreover, the neurons in the network would need
an efficient mechanism to communicate and pass data from
one neuron to another. Lastly, we would need a mecha-
nism to automate configuring and ”spinning up” a neural
network. Below we briefly discuss the technologies and
approaches needed to implement such a library.

2

3.1 Physical Representation of Neurons - Docker Con-
tainers

The use of Docker to represent a physical neuron was an
natural choice because Docker containers are self contained
units that enable you to provide everything an application
would need to run and nothing more; this includes an
operating system, file system (volatile file system), and
any needed software, frameworks or tools. Using Docker’s
Compose tool [7] containers can easily be configured as de-
pendencies of one another, allowing you to create a cluster
of containers that can be spun up together and that can
communicate with one another.

3.2 Centralized Storage Of Weighted Model Parameters
- Distributed NoSql Database

For our centralized parameter store, because the data is not
highly relational and we would need a scalable solution
distributed key-value store such a Amazon Web Services’
DynamoDB would be a good fit.

3.3 Interneuron Communication

For inter neural network communication we would need
an Inbound and output queue for each neuron in the net-
work in order to pass data such as computed weights, and
training model data from node to node. To implement such
communication fault tolerant message broker technologies
such as rabbitmq [8] or Apache Kafka [9] are good choices.

3.4 Automation of ”Spinning” Up Elastic Neural Net-
works

Infrastructure orchestration software such as Kubernetes,
Mesos and Amazon Web Service’s Elastic Container Service
are tools used in both test and production environments to
automate orchestrations for creating, configuring and man-
aging docker containers, and hence makes them a natural fit
for this task.

4 INITIAL PROPOSED APPROACH

During the initial research phase of this project, we discov-
ered Google’s Distributed TensorFlow project in spirit was
very similar to the initial idea that motivated our research.
Distributed TensorFlow allows you to create a cluster of
servers, where each worker process task is associated to a
server in the cluster.

Distributed TensorFlow though it is primarily used
for modeling machine learning computational models is
generic enough to be considered a general purpose dis-
tributed computing library. It offers most of the properties
we thought were paramount in implementing a library to
enable building elastic, distributed neural networks [3]: fault
tolerance, a means of sharing common calculated parame-
ters among devices, cross device communication, as well
as distributed execution of a computation graph among
nodes in a TensorFlow cluster [10]. Hence, we decided to
use Distributed TensorFlow as the base for the Culttlefish
library.

Note that Cuttlefish defines a docker container as a
single server in a TensorFlow cluster. Hence a Cuttlefish
distributed neural network is simply defined as TensorFlow
cluster.
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Fig. 1. Diagram example neural network nodes as docker containers. Note, the persistent distributed storage represent non-volatile storage for
localized data per docker container. Persistent storage is needed to provide fault tolerance for shared and unshared data.

4.1 Computation Graph Distribution

TensorFlow uses a greedy heuristic algorithm called the
"placement algorithm” [5] to determine how a computation
graph will be distributed for execution among all avail-
able devices. Default supported device types are CPUs and
GPUs, there is also a registration mechanism so that users
can implement and register their own device types [5].
TensorFlow provides an interface for users to influence how
the computation graph is distributed, by allowing them to
give “hints and partial constraints” to the algorithm [5].

Cuttlefish, we propose using the above described func-
tionality along with the configuration of each docker con-
tainer’s system resources (memory, number of CPUs etc) to
attempt to force TensorFlow’s placement algorithm to map
one node in the computation graph to one Docker container.
This is will test the viability of our motivation of using a
single Docker container to represent a single computational
unit in a distributed neural network (neuron).

4.2 Configuring Neural Network (Hyperparameters)

With Cuttlefish users define the configuration and shape of
their neural network’s hyperparameters in a yaml file. By
defining these parameters as “code”, versioning of these
parameters is simple, this also allows a user to automate
building these configuration files as a tasks in a larger
workflow where hyperparameters are being tested for a
given set of training data.

4.3 Automation & Orchestration: Creating Docker Con-
tainers As Per Cuttlefish Configuration File

Cuttlefish’s "build” functionality will use the Amazon Web
Services’ Elastic Container Service’s (ECS) API [11] and it’s
user defined elastic neural network configuration files to
configure and build a distributed neural network using a
cluster of docker containers (TensorFlow cluster).

With this approach, Cuttlefish takes the paradigm of
infrastructure as code and applies it to the configuring and

building of a distributed neural network as a cluster of
resources readily available for computation tasks.

Note, though we are using AWS’” ECS [12] for orches-
tration for this proof of concept, tools like Kubernetes and
Mesos are better choice as they offer finer grain control over
configuring resource allocation per container. Fine grain
control of such resources would allow for configuring and
tuning system resources per neuron type, thus making the
required system resources fit the computation task being
performed by a particular neuron. This level of control
would be useful when implementing neural networks such
as convolutional neural networks, where different types of
neurons perform different computational tasks and hence
are likely to have different resource needs.

4.4 Data Set

We are using the MNIST data set for training dis-
tributed neural networks created by Cuttlefish. “The MNIST
database of handwritten digits, available from this page, has
a training set of 60,000 examples, and a test set of 10,000
example.” [13][14] We chose the MNIST data set because it
is well documented, there is extensive benchmark data for it
and TensorFlow as the full data set in a preprocessed ready
to use format [14].

5 SYSTEM & APPLICATION ARCHITECTURE

In this section we will discuss the details of Cuttlefishs sys-
tem and application architecture, design decisions as well as
the challenges and limitations of employed technologies.

5.1 System Architecture

In this section we will discuss the details of Cuttlefishs
system architecture.
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Fig. 2. Figure shows the major components of Cuttlefish.

5.1.1 Amazon EC2 Container Service (ECS)

The primary motivation for Cuttlefish is create a library
that models distributed neural networks as computational
graphs where each neuron is a single computational unit in
the network and by using Docker containers to represent
a physical neuron in a neural network it allows us to
create highly configurable neural networks that can be spun
up as infrastructure. In order to support this functionality,
Cuttlefish must implement automated creating its cluster of
containers.

Amazon Web Services EC2 Container Service (ECS) is
the heart of Cuttlefish’s system architecture. ECS enables
users to easily automate the orchestration, configuring and
deploying of a cluster of docker containers. ECS also con-
tains a repository service to store the images used to build
Docker containers. Cuttlefishs computational graphs are
distributed and run on an elastic container cluster, where
each distributed TensorFlow container runs on a single
Elastic Compute Instance. Though the initial approach was
to run all Docker distributed TensorFlow containers on one
EC2 instance, in order to limit the financial resources re-
quired during the initial development phase, as well as limit
unknown technical limitations or challenges, we discovered
this approach was not possible due to limitations of the ECS
service.

ECS is opinionated and makes assumptions about the
likely use cases for the service. One assumption and major
limitation of the current version of the service is by default
containers listening to the same port, and hence running the
same application(s) do not need to reside on the same EC2
instance. There are two solutions to address this limitation.
One solution is to use dynamic port mapping by lever-
aging the AWS application load balancer service to map
a single port number to multiple containers on the same
EC2 instance. The other is to distribute the clusters docker
containers, such that one container runs one EC2 instance.
We chose the latter solution as it offered the most flexibility
as it enabled Cuttlefish to maintain control how it distributes
computational graphs and data.

5.1.2 Amazon Auto Scaling Groups

The ability to create new Docker containers based on neural
network configuration files is a key feature of Cuttlefish.
In order to support this feature our system infrastructure
must support infrastructure elasticity. To implement this we
employed the use of Amazon Web Servers Auto Scaling
Groups feature. Auto Scaling Groups allow you to treat a

collection of EC2 instances as “a logical grouping for the
purposes of instance scaling and management.” [22]

The ECS service allows users to create as many Docker
container instances as needed as long as there is are un-
derlying EC2 instances to support them. By creating an
Auto Scaling Group, we configured the underlying infras-
tructure to support a configurable, maximum number of
EC2 instances to support our container cluster. This is a key
design decision as we would be unable to dynamical scale
our cluster without it.

5.1.3 Logging & Monitoring

By default AWS allows the use of the CloudWatch service
to support logging and monitoring ECS containers and their
corresponding EC2 instances. To use this feature we simply
configure a log group in the underlying task definition that
is used as a template to create container instances in the
Cuttlefish ECS cluster.

5.1.4 Amazon Elastic Compute (EC2) Virtual Machine
Specifications

For proof of concept testing we are using T2 EC2 instances
to host the distributed TensorFlow Docker containers. T2
instances are “instances that provide a baseline level of CPU
performance with the ability to burst above the baseline.”
[aws-specs] The Amazon Machine Image (AMI) is an elastic
container service optimized customer Amazon Linux distri-
bution. Below is a summary of EC2 instance specifications
for machines used to house the Cuttlefish ECS cluster.

e Box Type: t2.medium

e AMI: Amazon Linux AMI 2016.09.a x86_64 ECS
HVM GP2

e Storage: EBS storage only

e Memory: 4GB

e CPU Units: 2

5.2 Application Architecture

Cuttlefish as a proof of concept application, was written
to test our ideas regarding a novel way of modeling and
executing neural networks as a distributed computational
graph, where each neuron in the network is modeled as
a single computational unit; as well as test automating
spinning up distributed neural network as infrastructure
using configuration files that describe the neural networks
hyperparameters, number of epochs etc. Cuttlefish is
currently comprised of three major components, the Neural



Network Builder (NNB), the Cuttlefish Client and the
Cuttlefish neural network models.

The Neural Network Builder (NNB), is responsible for
reading a given neural network configuration file and cre-
ating new instances of TensorFlow Docker containers using
the configured number of hidden layers, number of nodes
per layer and number a TensorFlow (shared) parameter
servers to calculate how many Docker containers to create
in it’'s ECS cluster. The NNB client drives this process of
“spinning” distributed neural networks. The NBB client
runs as a script and takes a neural network configuration
file that describes the network to “spin” up as a command
line argument.

neural_network:
num_of_hidden_layers: 3
num_nodes_per_layer: 5
num_classes: 10

training:
epochs: 300
data_batch_size: 100
num_parameter_servers: 2

ecs:
task_definition: 'cuttlefish-task-dev2:7'
cluster: 'cuttlefish-dev’
auto_scaling_group_resource_id: 'EC2-Cuttlefish’

Fig. 3. Figure shows a simple deep feed forward neural network configu-
ration. Note, the configuration includes hyperparameter values, Tensor-
Flow and ECS related configuration values.

The Cuttlefish Client, is responsible for driving the pro-
cess of creating, distributing and training distributed neural
network models. The Cuttlefish Client like the NNB client,
runs as a script and takes a neural network configuration file
that describes the network to ”“spin” up as a command line
argument. It then uses this configuration file to determine
which distributed neural network model it will run, which
auto scaling group should be used to get the ECS instance
IP addresses to be used to configure the TensorFlow server’s
workers and shared parameter servers. Lastly, the Cuttlefish
Client runs the distributed neural network model. The Cut-
tlefish Client also drives execution of the distributed neural
network models.

Like many modern machine learning and deep learning
frameworks and applications, Cuttlefish is implemented in
python 3.5 and python 2.7 [15].

6 CHALLENGES AND LIMITATIONS USING Dis-
TRIBUTED TENSORFLOW

We encountered several technical challenges and limita-
tions, specifically focused around using distributed Tensor-
Flow to test our approach of distributing neural network
nodes as a single computational unit to be executed. This
section briefly discusses the challenges encountered and
limitations of using TensorFlow to implement Cuttlefish.

5

6.1 Distributed TensorFlow Manual Process For Clus-
ter and Server Setup

At the time of writing this paper running distributed Tensor-
Flow is a very manual process. For each worker and shared
parameter server (container) we needed to execute the client
on each Docker container which limited our ability to effec-
tively test distributing our computational graph, where each
neuron runs on it’s on Docker container. With this limitation
in order to fully explore our ideas using TensorFlow as it
would have required a significant development effort to
properly orchestrate the process of not only “spinning” up a
cluster of Docker containers but also automating the process
of pulling the latest Cuttlefish code and executing / training
the intended model.

We also encountered some challenges when trying to
force TensorFlow’s placement algorithm to distributed the
graphs using our approach. This challenge stems from the
framework’s opinions on how graphs should be distributed.
TensorFlow supports between-graph replication and in-
graph replication and neither approach fully supports the
approach we wanted to explore. Despite these challenges,
we were able to successfully train a model against the
MNIST dataset, using a basic, feed forward, deep neural net-
work using both distributed and non-distributed Tensoflow
against the MNIST dataset.

6.2 Limited Documentation

Though the TensorFlow white-paper, website and github
repository are useful resources, they were limited in the
depth and scope needed to implement any solutions beyond
the basic examples implemented in the documentation.
Given that TensorFlow, though gaining in recent popularity
is still a fairly new technology which limits documentation
(blog posts, tutorials etc) found in the general development
community.

7 RESULTS

Single-machine Results
# of Nodes # of Layers # of epochs
5 3

1000 88.61%
10 94.99%
2000 95.82%
30 96.95%

500 4

50 3

784, 2500, 5
2000,1500,1000,500,10

Fig. 4. Results for Single-machine Testing.

Distributed version Results
# of Nades # of machines  #of Layers | #of epochs  Accuracy
5 2 3

1000 50.89%
500 2 4 10 7175
50 2 3 2000 85.75%

Fig. 5. Results for Distributed version Testing.

The model has been tested on a single computer which
is called the single-machine or single node implementation



and on the distributed version which supports multiple
devices (CPUs) across a cluster of machines. Fig. 4 illustrates
the results for Single-machine testing while fig. 5 shows the
results for distributed version.

8 CONCLUSION

Despite limitations and technical challenges we conclude
based on the insights gains through the initial work on
Cuttlefish that the problems it attempts to solve are worthy
of continued exploration. Although we were unable to con-
firm the efficacy of our proposed approach to computational
graph distribution there is evidence that this solution is
not only possible to implement but a worthy approach to
explore.

8.1 Future Work

In this section we briefly discuss future work and research
on Cuttlefish.

8.1.1 Implement Cuttlefish to Distributed Neural Networks
Without TensorFlow

In order to fully explore our ideas regarding computational
graph distribution we propose continued work on Cuttle-
fisth without leveraging TensorFlow. This will allow us to
flexibility to explore all facets of the problem.

8.1.2 Implement A More Robust Orchestration and Au-
tomation Solution

We propose implementing a more robust orchestration and
automation solution to replace our use of Amazon'’s Elastic
Container Service (ECS). Although ECS is fairly easy to
use, it has technical limitations that make it far less flexible
and mature than competing products such as Kubernetes or
Docker Swarm.
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