
Cuttlefish: A Library For Building Distributed
Neural Networks

Abu Kamruzzaman∗, Rania Mohammedameen Almajalid†, Yu Hou‡ and Teresa Nicole Brooks§
Computer Science, Pace University

Pleasantville NY
Email: ∗ak91252p@pace.edu, †ra56319p@pace.edu, ‡yh50276p@pace.edu, §tb93141n@pace.edu

Abstract—This paper will discuss the implementation of
Cuttlefish, a library for building configurable, fault tolerant,
distributed neural networks. Cuttlefish is built on top of the
Distributed TensorFlow library. It uses Docker containers to
represent units or neurons in the a neural network. More
specifically each container (neuron) will run as a service that
can communicate with other neurons in the network. Our neural
network will be a n layered network, implemented and configured
to run on Amazon Web Service’s Elastic Container Service (ECS).

I. INTRODUCTION

Machine learning and more specifically the use of Neural
Networks have many applications in both the research and
commercial software. Though most machine learning tech-
niques and algorithms employed today were developed over
20 years ago the rise of cheap, powerful processors (GPUs
and CPUs) and higher capacity storage has allowed these
techniques and algorithms to be used at scale.

In this paper we will talk about the implementation of
Cuttlefish, a library for building configurable, fault tolerant,
distributed neural networks. We will discuss the technologies
used to implement this library which includes the use of
clustered Docker containers, where each container represents
a neuron in the network, Distributed TensorFlow and Amazon
Web Service’s Elastic Container Service (ECS).

II. BACKGROUND

In this section we will briefly discuss the technologies used
to build Cuttlefish. In later sections we will discuss in more
detail how these technologies are used.

1) Docker: Docker is the world’s leading software con-
tainerization platform [9]. Docker is open source, designed
to make it easier to create, deploy, and run distributed ap-
plications inside lightweight Linux containers. It provides a
way to run applications securely isolated in a container by
packaging it and all its dependencies as well as libraries.
Docker containers can wrap the software into a self-contained
unit with a complete file-system that contains everything
needed to run [8]: operating system, code, runtime, system
tools, system libraries, and configured system resources, etc.
By using Docker containers, we can deploy, and back up a
workload regardless of environment quickly and easily more
than using virtual machines.

Docker allows to change any application dynamically by
adding new capabilities and scaling services which makes
containers more portable and flexible to use. Docker also has
a mechanism for configuring and spinning up containers that
should be clustered together or that are dependencies of one
another.

One of the Docker advantages is simplified maintenance
which means Docker minimize the efforts and risks which
associates with application dependencies. The other advantage
is increasing developer productivity because it decreases the
time that spent setting up new environments or solving the
issues between different environments.

2) TensorFlow: TensorFlow is essentially a framework for
building Deep Learning Neural Networks [7]. It was developed
by engineers and researchers working on the Google Brain
Team within Google’s Machine Intelligence research organiza-
tion. It is an open source software library for machine learning
computation using data flow graphs [7]. Data flow graphs
describe mathematical computation with nodes and edges.
Each node in the graph represents mathematical operations,
while edges represent the relationships between nodes. A
computation expressed using TensorFlow can be executed in
one or more GPUs or CPUs in a desktop, mobile device, or
server with a single API.

The initial open-source release of TensorFlow supports mul-
tiple devices (CPUs and GPUs) [7] in a single computer which
is called the single-machine or single node implementation,
while the distributed version supports multiple devices (CPUs
and GPUs) across a cluster of machines.

3) Amazon EC2 Container Service (ECS): Amazon EC2
Container Service (ECS) is high performance container man-
agement service which supports Docker containers through
Management Console or Command Line Interface. It is highly
scalable and allows applications to run easily on a managed
cluster of Amazon Elastic Compute Cloud (Amazon EC2)
instances. Amazon ECS enables applications to be scaled
without any additional complexity from a single container to
thousands of containers across hundreds of instances [3]. Ama-
zon ECS allows launch and stop container-based applications
with simple API calls.

III. MOTIVATION

The motivation for Cuttlefish was born from the the ob-
servation that neural networks at their core are computational

Fig. 1. Diagram example neural network nodes as docker containers. Note, the persistent distributed storage represent non-volatile storage for localized data
per docker container. Persistent storage is needed to provide fault tolerance for shared and unshared data.

graphs and more specifically directed computational graphs,
where each neuron in the graph is a single computation unit.
This observation coupled with the understanding that in order
to train models and perform inference on new data presented
to these models at scale, in a production environment, requires
implementing neural networks in a way that enables us to in-
finitely scale the execution of the these computation graphs in
way that allows us to leverage all available system resources.

Tasks for training models and performing inference in neural
networks are inherently parallelizable. Hence, it should be
possible to implement a library that allows users to create
a fault tolerant, distributed neural network, using configurable
hyperparameters to drive the dynamic creation of a directed
graph of neurons (a neural network). To implement this library
we need a way to represent each node in the network phys-
ically; as a device or machine where computation execution
will take place. We also need a centralized database to store
intermediate values for the weight parameters each neuron
calculates during model training. Moreover, the neurons in the
network would need an efficient mechanism to communicate
and pass data from one neuron to another. Lastly, we would
need a mechanism to automate configuring and ”spinning up”
a neural network. Below we briefly discuss the technologies
and approaches needed to implement such a library.

1) Physical Representation of Neurons - Docker Contain-
ers: The use of Docker to represent a physical neuron was an
natural choice because Docker containers are self contained
units that enable you to provide everything an application
would need to run and nothing more; this includes an operating
system, file system (volatile file system), and any needed
software, frameworks or tools. Using Docker’s Compose tool
[10] containers can easily be configured as dependencies of
one another, allowing you to create a cluster of containers
that can be spun up together and that can communicate with
one another.

2) Centralized Storage Of Weighted Model Parameters -
Distributed NoSql Database: For our centralized parameter
store, because the data is not highly relational and we would
need a scalable solution distributed key, value stores such a
Amazon Web Services’ DynamoDB would be a good fit.

3) Interneuron Communication: For inter neural network
communication we would need an Inbound and output queue
for each neuron in the network in order to pass data such
as computed weights, and training model data from node
to node. To implement such communication fault tolerant
message broker technologies such as rabbitmq [6] or Apache
Kafka [1] are good choices.

4) Automation of ”Spinning” Up Elastic Neural Networks:
Infrastructure orchestration software such as Kubernetes,
Mesos and Amazon Web Service’s Elastic Container Service
are tools used in both test and production environments to au-
tomate orchestrations for creating, configuring and managing
docker containers, and hence makes them a natural fit for this
task.

IV. OUR APPROACH

** Note, this section should really be called ”Our Proposed
Approach” as is being written before we have implemented
Cuttlefish and before we know more about Distributed
TensorFlow’s capabilities**

During the initial research phase of this project, we dis-
covered Google’s Distributed TensorFlow project in spirit was
very similar to the initial idea that motivated our research.
Distributed TensorFlow allows you to create a cluster of
servers, where each worker process task is associated to a
server in the cluster.

Distributed TensorFlow though it is primarily used for
modeling machine learning computational models is generic

enough to be considered a general purpose distributed com-
puting library. It offers most of the properties we thought
were paramount in implementing a library to enable building
a distributed neural networks: fault tolerance, a means of
sharing common calculated parameters among devices, cross
device communication, as well as distributed execution of a
computation graph among nodes in a TensorFlow cluster [4].
Hence, we decided to use Distributed TensorFlow as the base
for the Culttlefish library.

Note that Cuttlefish defines a docker container as a single
server in a TensorFlow cluster. Hence a Cuttlefish distributed
neural network is simply defined as TensorFlow cluster.

1) Computation Graph Distribution: TensorFlow uses a
greed heuristic algorithm called the ”placement algorithm”
[11] to determine how a computation graph will be distributed
for execution among all available devices. Default supported
device types are CPUs and GPUs, there is also a registration
mechanism so that users can implement and register their
own device types [11]. TensorFlow provides an interface for
users to influence how the computation graph is distributed,
by allowing them to give ”hints and partial constraints” to the
algorithm [11].

Cuttlefish, will use the above described functionality along
with the configuration of each docker container’s system
resources (memory, number of CPUs etc) to attempt to force
TensorFlow’s placement algorithm to map one node in the
computation graph to one Docker container. This is will
test our the viability of our motivation of using a single
Docker container to represent a single computational unit in a
distributed neural network (neuron).

2) Configuring Neural Network (Hyperparameters): With
Cuttlefish users define the configuration and shape of their
neural network’s hyperparameters in a yaml file. By defining
these parameters as ”code”, versioning of these parameters
is simple, this also allows a user to automate building these
configuration files as a tasks in a larger workflow where
hyperparameters are being tested for a given set of training
data.

3) Automation & Orchestration: Creating Docker Contain-
ers As Per Cuttlefish Configuration File: Cuttlefish’s ”build”
functionality will use the Amazon Web Services’ (AWS)
contain service’s API [2] and it’s user defined elastic neural
network configuration files to configure and build a distributed
neural network using a cluster of docker containers (Tensor-
Flow cluster).

With this approach, Cuttlefish takes the paradigm of infras-
tructure as code and applies it to the configuring and building
of a distributed neural network as a cluster of resources readily
available for computation tasks.

Note, though we are using AWS’ ECS [3] for orchestration
for this proof of concept, tools like Kubernetes and Mesos are
better choice as they offer finer grain control over configuring
resource allocation per container. Fine grain control of such
resources would allow for configuring and tuning system
resources per neuron type, thus making the required system
resources fit the computation task being performed by a

particular neuron. This level of control would be useful when
implementing neural networks such as convolutional neural
networks, where different types of neurons perform different
computational tasks and hence are likely to have different
resource needs.

4) Data Set: We are using the MINST data set for training
distributed neural networks created by Cuttlefish. ”The MNIST
database of handwritten digits, available from this page, has
a training set of 60,000 examples, and a test set of 10,000
example.” [5] We choice the MINST data set because it is
well documented, there is extensive benchmark data for it and
TensorFlow as the full data set in a preprocessed ready to use
format.

V. SYSTEM & APPLICATION ARCHITECTURE

TBD

VI. RESULTS

TBD

VII. IMPROVEMENTS & POSSIBLE FUTURE WORK

TBD

VIII. RELATED WORK

TBD

IX. CONCLUSION

TBD

REFERENCES

[1] Apache kafka product site.
[2] Aws elastic container serice api documentation.
[3] Aws elastic container service product page.
[4] Distributed tensorflow.
[5] Mnist documentation.
[6] Rabbitmq product site.
[7] Tensorflow homepage.
[8] Top three benefits using docker.
[9] What is docker?

[10] Docker. Docker documentation site.
[11] Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Cor-

rado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian
Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia
Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan
Mane Rajat Monga Sherry Moore Derek Murray Chris Olah Mike
Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar
Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viegas Oriol
Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu Mart n
Abadi, Ashish Agarwal and Xiaoqiang Zheng. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. 2016.

